
 c

Introduction – Preventing Time Waste and Nasty Surprises
Remember that feeling when ATE patterns fail but nobody knows why? Preventing the

frustration and waste of time involved in debugging such failures was the motivation

for writing this whitepaper. But post-silicon failures are not the only concern of test

engineers, which are also interested in making pre-silicon ATE pattern bring up quick

and effective. And so, this whitepaper covers both pattern bring up and failure debug,

hoping to accelerate test program development from end to end.

Pre-silicon ATE pattern bring up and post-silicon failure debug are two major concerns of test engineers

The recent poll results below show how painful these post-silicon timebombs can be,

often taking several months from first silicon until shipping prototypes to customers.

From first silicon until shipping prototypes to customers: test program dev, pattern bring up, and debug

A second poll below looked into main causes of delays in first silicon bring up and

debug, which explain the long time it takes until shipping prototypes to customers.

The main reason turned out to be the gap between DFT and test engineering.

Accelerating ATE Pattern

Bring Up and Debug

Both pre-silicon ATE pattern

bring up and post-silicon

failure debug can be

significantly accelerated in

many cases, preventing

costly pre-silicon time waste

and nasty post-silicon

surprises.

T

White Paper

Eran Belaish,

Director of Product Marketing, TestInsight

Copyright © 2020 - TestInsight 2

Accelerating ATE Pattern Bring Up and Debug

Causes of delays in first silicon bring up and debug

To address these issues, this document begins with looking into methods for

accelerating pre-silicon ATE pattern bring up and continues to surveying techniques

for accelerating post-silicon failure debug. It then concludes with exploring specific

tools that can be used for achieving the suggested accelerations, as some of the

methods mentioned below might not be supported by all toolsets.

Accelerating Pre-Silicon ATE Pattern Bring Up
Identifying the major time wasters for ATE pattern bring up is an important first step

towards accelerating the development process. Once these are identified, there are

several remedies that can be mixed and matched according to the specific

requirements of each project.

Handling slow pattern conversion

Slow conversion of test patterns into ATE format can sometimes waste several days,

and remedying it depends primarily on the performance and features of the

conversion tools. The first method is to use faster conversion tools, bearing in mind

that differences in performance can be as high as 200X between different tools. It is

therefore recommended to conduct proper evaluation and benchmarking, including

conversion performance measurement, before deciding on a toolset.

Skipping compilation to a binary format is another method that some conversion tools

support as they create patterns directly in ATE binary format without compiling them.

This saves up to 70% of conversion time and also prevents compilation problems.

The third method is relevant when using testers with multiple clock domains.

Leveraging this ATE feature often requires running several conversion passes, one for

each clock domain, and then combining them manually. Instead of this time-

consuming process, some tools can handle all clock domains in a single pass saving

both runtime and manual integration work.

Verifying ATE-compliance of test patterns

Design engineers, which are often unaware of ATE restrictions, might create test

patterns that are not ATE-compliant, leading to lengthy iterations between designers

and test engineers. To prevent it, some tools can verify that the test patterns comply

18%

42% 45%

32% 32%
39%

13%

Design access DFT & test
aren't in same

location

DFT & test use
different
technical
languages

ATE access
time

Understanding
of ATE

Test Bench &
simulator

correlatoin

Other Placeholder

.

It often takes several months

from first silicon to shipping

prototypes to customers.

One of the main causes of

these painful delays is that

DFT and test engineers use

different technical

languages.

T

Copyright © 2020 - TestInsight 3

Accelerating ATE Pattern Bring Up and Debug

with the target ATE, covering both static compliance such as timing restrictions and

dynamic hazards such as loop counter limits. Performing this check early in the project

flow can save a lot of problems later on.

Avoiding unnecessary manual work

Using advanced ATE features can simplify test pattern development and save a lot of

time-consuming manual work. For example, Xmodes can be used when patterns are

too big for the ATE, saving the effort of modifying the tests manually. Another

example is using the ATE's multiple clock domains for concurrent testing. Instead of

spending considerable time during pattern development to optimize ATE runtime,

simply use the tools to split single clock domains into multiple clock domains.

Advanced tools features can also be used to automate manual tasks and accelerate

test development. For example, instead of manually integrating multiple patterns into

a single test program, use the tools to do it automatically. Another example is a GUI-

based UI that displays pattern waveforms and can facilitate faster test development.

Preventing maintenance and repeated simulations of multiple device setups

Each production test has a specific device setup, which could differ in just a few

register bits from another setup. This is how we end up with thousands of setups

leading to thousands of patterns, which are time-consuming to maintain and simulate.

How to maintain thousands of patterns without harming cost, quality, and schedules?

Simplifying setup maintenance and avoiding repeated simulation of multiple setups

requires both advanced tools and improved methodologies. These tools can read the

setup database of the Device Under Test (DUT) and produce optimized test patterns

at runtime without time-consuming simulation and translation. This allows sharing the

database as a single source of truth among design, test, and silicon validation (SV)

teams, leading to faster development using fewer resources.

There are several methods

for accelerating ATE pattern

bring up that can be mixed

and matched. For example,

speeding up pattern

conversion using faster

tools, automating

development tasks using

advanced features, and

simplifying device setup

maintenance using

dedicated tools.

T

Copyright © 2020 - TestInsight 4

Accelerating ATE Pattern Bring Up and Debug

Accelerating Post-Silicon ATE Pattern Debug
To quickly handle failing patterns during production testing it is essential first to detect

the root cause of each failure out of several different potential reasons:

• Design issues such as forgetting forced values in a BIST

• Test engineering issues such as a faulty pattern conversion from EDA to ATE

• Production issues such as actual product defects

An effective root cause analysis saves both valuable post-silicon debug time and

blamestorming, where the different teams blame each other for the failures.

Quick root cause analysis using a Virtual ATE

A Virtual ATE is a very effective tool for performing root cause analysis. It converts test

program files into an ATE-aware Verilog model that emulates how ATE drives the DUT.

Once an ATE pattern fails, a Virtual ATE allows running this pattern in simulation with

far greater debug capabilities than the physical tester provides. It can verify that tests

are ATE-compatible and identify pattern conversion flaws, quickly indicating if failures

are caused by design issues, test engineering issues, or actual production issues.

A virtual ATE can also bridge the gap between design and test engineers, which is one

of the main reasons for delays in first silicon bring up and debug, as explained above.

Test engineers can use the tool to generate an ATE-aware Verilog test bench used for

ATE emulation by the design team, allowing the different teams to use a common

language.

A virtual ATE tester closes the open loop between design and test, simplifying production test debug

To learn more about this unique tool, download the Virtual ATE whitepaper here.

"A Virtual ATE is a very

effective tool for performing

root cause analysis. Once an

ATE pattern fails, a Virtual

ATE allows running this

pattern in simulation with

far greater debug

capabilities than the physical

tester provides."

To learn more about this

unique tool, download the

Virtual ATE whitepaper here.

T

https://www.testinsight.com/wp-content/uploads/2020/01/TestInsight-Early-Test-Program-Validation-Using-a-Virtual-ATE.pdf
https://www.testinsight.com/wp-content/uploads/2020/01/TestInsight-Early-Test-Program-Validation-Using-a-Virtual-ATE.pdf

Copyright © 2020 - TestInsight 5

Accelerating ATE Pattern Bring Up and Debug

Compare failing ATE patterns with their source EDA format

When a pattern fails on ATE, a simple yet effective check is to compare the pattern

with its source EDA format using a cross-format comparison tool. Such a tool can track

down the root cause of any difference and immediately tell if anything went wrong

when converting the original pattern into ATE format.

Drowning in formats – A tool that compares different test formats simplifies and accelerates debug flow

Prevent Failures in the First Place – Debug Before Silicon
Why wait for silicon to find out? It is possible not to be surprised again by ATE failures

using pre-silicon validation of the test program, which saves valuable time and

resources during production testing. Many of the tools and methodologies mentioned

above can be used for pre-silicon pattern validation, simplifying and accelerating post-

silicon debug as a result. For example, checking for tester compliance, comparing ATE

patterns with their source EDA format, and using a Virtual ATE can validate the test

program long before silicon is available.

Conclusion
ATE pattern bring up and debug can be significantly accelerated using the right tools

and methodologies, saving valuable resources. As some of the methods mentioned

above are not supported by all toolsets, here are a few examples of specific tools that

can be used to achieve such acceleration:

TDL - Converting design vectors into ATE programs

The fastest conversion tool available combines ease of use and GUI with effective

features facilitating faster test development, such as skipping compilation to a binary

format and supporting multiple clock domains.

Virtual Tester (VT) - Pre-silicon test program validation using a virtual ATE

VT Creates an ATE-aware Verilog model, which allows pre-silicon testing with the

same results as post-silicon ATE, making production test debug shorter and more

predictable. VT can be used both during post-silicon debug for a quick root cause

analysis and for pre-silicon test program validation to prevent failures in the first

place.

TestDiff – Cross-format test comparison

TestDiff compares test vectors of different EDA and ATE formats at waveform level for

improved quality and debug flow. This allows comparing failing ATE patterns with their

source EDA format and track down the root cause of any difference. Same as VT,

TestDiff can also be used both during post-silicon debug and for pre-silicon test

program validation.

"When a pattern fails on

ATE, a simple yet effective

check is to compare the

pattern with its source EDA

format using a cross-format

comparison tool. Such a tool

can track down the root

cause of any difference and

immediately tell if anything

went wrong."

T

https://www.testinsight.com/tester-data-link/
https://www.testinsight.com/vt-stil/
https://www.testinsight.com/testdiff/

Copyright © 2020 - TestInsight 6

Accelerating ATE Pattern Bring Up and Debug

PatGen - Runtime pattern generation with no simulation or translation

PatGen simplifies DUT setup maintenance and saves valuable resources by producing

optimized test patterns at runtime with no need to simulate and translate them. This

allows using a single database shared by design, test, and SV teams, which accelerates

development and requires fewer resources to handle. PatGen also provides

transaction-level test creation, update, and debug instead of bit-level ones, which

makes debug faster and more intuitive thanks to a higher level of abstraction.

When using PatGen there is no need to handle patterns anymore

Test Vector Studio – GUI-based test pattern development

Test Vector Studio combines a user-friendly GUI with powerful pattern development

tools such as Tester Rule Check (TRC) and Test Vector Editor. The GUI allows to view

and analyze ATPG and ATE patterns at both waveform level and source code one,

simplifying test development. TRC provides early vector verification, checking both

static compliance and dynamic hazards with the specific target ATE. Test Vector Editor

supports vector manipulation, parallelization, and compression, optimizing tester

utilization and allowing greater ATE selection.

Test Vector Studio - Using a GUI simplifies and accelerates both pattern development and failure debug

End-to-end acceleration can

be achieved using tools such

as these:

• TDL: the fastest

conversion tool available

• Virtual Tester: a virtual

ATE

• TestDiff: cross-format

test comparison

• PatGen: simplifies DUT

setup maintenance

• Test Vector Studio: GUI-

based test development

T

https://www.testinsight.com/patgen/
https://www.testinsight.com/tester-data-link/#GUI

Copyright © 2020 - TestInsight 7

Accelerating ATE Pattern Bring Up and Debug

As depicted below, putting it all together in a single flow can provide the desired end-

to-end acceleration, prevent nasty post-silicon surprises, and simplify test program

debug.

End-to-end acceleration helps to deliver on time and prevent nasty post-silicon surprises

To learn more about useful tools for your test program, please contact

info@testinsight.com

mailto:info@testinsight.com

